
SMS Training Course

Dan Schaffer
NOAA Forecast Systems Laboratory

December 2004

December 2004 SMS Training Course 2

Outline
• Overview
• Decompositions, array/loop transformations
• Resolving adjacent and global dependencies
• Partial parallelization
• Nesting
• I/O
• Building and running an SMS program
• Debugging support
• Performance optimization

December 2004 SMS Training Course 3

Overview

• Extensive documentation available at:
www-ad.fsl.noaa.gov/ac/sms.html

• Web-site includes a link to the SMS User’s
Guide. Latest public version is 2.8. I have
provided a PDF version of version 2.9 by
email to Mark

http://www-ad.fsl.noaa.gov/ac/sms.html

December 2004 SMS Training Course 4

Overview
Oceanic
Models

Atmospheric
Models

Data
Decomposition

Adjacent
Dependencies

Reductions

Optimization

Debugging

Static & Dynamic
Memory

Nesting

Incremental
Parallelization

Boundary
Conditions

Parallel I/O

SMS

December 2004 SMS Training Course 5

Code Parallelization With SMS

Optimization

Debugging

Code
Analysis

Add
Directives

Serial
Executable

Parallel
Code

(Rollout)
PPP: Code
Translator

Parallel
Executable

SMS
Serial
Code

Original
Serial
Code

Compile

Compile

December 2004 SMS Training Course 6

SMS Serial Code
 integer IM, i
 parameter(IM = 15)
CSMS$DECLARE_DECOMP(my_dh, 1)
CSMS$DISTRIBUTE(my_dh, <IM>) BEGIN
 real x(IM), y(IM), xsum
CSMS$DISTRIBUTE END

CSMS$CREATE_DECOMP (my_dh, <IM>, <2>)
 open (10, file = ’x_in.dat’, form=’unformatted’)
 read (10) x
CSMS$PARALLEL(my_dh, <i>) BEGIN
 do 100 i = 3, 13
 y(i) = x(i) - x(i-1) - x(i+1) - x(i-2) - x(i+2)
 100 continue
CSMS$HALO_UPDATE(y)
CSMS$CHECK_HALO(y, ’before loop 200’)
 do 200 i = 3, 13
 x(i) = y(i) + y(i-1) + y(i+1) + y(i-2) + y(i+2)
 200 continue
CSMS$COMPARE_VAR(x, ’after loop 200’)
 xsum = 0.0
 do 300 i = 1, 15
 xsum = xsum + x(i)
 300 continue
CSMS$REDUCE(xsum, SUM)
CSMS$PARALLEL END
 print *,’xsum = ’,xsum

December 2004 SMS Training Course 7

Typical FDA Decompositions

z
SMS NFS

x

y

December 2004 SMS Training Course 8

Overview

• SMS provides directives for:
– Decompositions and Array bound, Loop

Transformations
• CSMS$DECLARE_DECOMP
• CSMS$CREATE_DECOMP
• CSMS$DISTRIBUTE
• CSMS$PARALLEL

December 2004 SMS Training Course 9

Overview

• SMS provides directives for:
– Resolving adjacent dependencies

• CSMS$HALO_UPDATE

– Resolving global dependencies
• CSMS$REDUCE

– Partial parallelization
• CSMS$SERIAL
• CSMS$TO_LOCAL

December 2004 SMS Training Course 10

Overview

• SMS provides directives for:
– Boundary conditions

• CSMS$GLOBAL_INDEX

– Formatted output
• CSMS$PRINT_MODE

– Debugging
• CSMS$COMPARE_VAR
• CSMS$CHECK_HALO

December 2004 SMS Training Course 11

Overview

• SMS provides directives for:
– Nesting

• CSMS$SET_NEST_LEVELS
• CSMS$SET_TRANSFER_INTERPOLATE
• CSMS$TRANSFER

– Performance optimization
• CSMS$HALO_COMP

December 2004 SMS Training Course 12

Overview

• Supported machines
– SGI O3K, Altix
– SUN UltraSparc
– IBM SP
– DEC Alpha
– HP Superdome
– LINUX Clusters

December 2004 SMS Training Course 13

Overview

• SMS accepts ANSI FORTRAN77 code plus
FORTRAN90 syntax including:
– real*8, integer*8, (etc.)
– do/end do
– while statement
– namelists
– Whole array assignments

real x(10)
x = 1.0

– Include files

December 2004 SMS Training Course 14

Overview

• More FORTRAN90 syntax:
– Allocatable arrays
– Pointers
– F90 variable declarations
integer, intent(in) :: i1(:)

– Modules (partial support)
– Fixed and free format

December 2004 SMS Training Course 15

Overview

• SMS directives
– Start with CSMS$ (!SMS$ for free format)
– Case insensitive
– May be no more than 72 characters per line
– Can continue to another line: CSMS$>
– May be inserted into FORTRAN include/module

files
– Can apply to multiple lines using begin/end syntax

December 2004 SMS Training Course 16

Outline
• Overview
• Decompositions, array/loop transformations
• Resolving adjacent and global dependencies
• Partial parallelization
• Nesting
• I/O
• Building and running an SMS program
• Debugging support
• Performance optimization

December 2004 SMS Training Course 17

Decomposition Directives

• Overview
– CSMS$DECLARE_DECOMP makes user defined

decomposition "name" visible

– CSMS$CREATE_DECOMP initializes SMS data
structures

– CSMS$DISTRIBUTE specifies how each array is
decomposed

December 2004 SMS Training Course 18

Decomposition Directives

• CSMS$DECLARE_DECOMP
– Functionality

• A declarative (not executable) directive
• Makes decomposition "name" visible to other directives

– Declares internal SMS data structures
• Tells SMS number of decomposed dimensions (at most 2

supported currently)
• Only one needed per decomposition

December 2004 SMS Training Course 19

Decomposition Directives

• CSMS$DECLARE_DECOMP
– Syntax, dynamic memory
CSMS$DECLARE_DECOMP(dh, num_decomposed_dims)

– Static memory discussed in the user’s guide

December 2004 SMS Training Course 20

Decomposition Directives

• CSMS$CREATE_DECOMP
– Functionality

• An “executable” directive that should be placed at the
program beginning

• Tells SMS
– Global sizes of decomposition dimensions
– Maximum halo widths (sizes of largest stencil)

• Initializes internal SMS data structures
• Generates process local memory layout

December 2004 SMS Training Course 21

Decomposition Directives

• CSMS$CREATE_DECOMP
– Syntax:

CSMS$CREATE_DECOMP(dh,
CSMS$> <ddim1_global_size, ddim2_global_size>,
CSMS$> <ddim1_halo_width, ddim2_halo_width>)

ddim1_global_size is the global size of the 1st
decomposed dimension

ddim2_global_size is the global size of the 2nd
decomposed dimension

ddim1_halo_width should be set to the maximum
stencil size over the entire model for the 1st
decomposed dimension (also for ddim2_halo_wdith)

December 2004 SMS Training Course 22

Decomposition Directives
• CSMS$DISTRIBUTE

– Functionality
• A declarative (not executable) directive
• Specifies how arrays are decomposed
• Replaces array declarations and allocations with process

local equivalents
• Associates arrays with decompositions:

– Communication directives such as HALO_UPDATE,
SERIAL, CHECK_HALO, COMPARE_VAR

– Used for Fortran I/O
• Many needed per decomposition

December 2004 SMS Training Course 23

Decomposition Directives

• CSMS$DISTRIBUTE
– Syntax:
CSMS$DISTRIBUTE(dh, <ddim1_tag>, <ddim2_tag>) BEGIN

<serial code array declarations>
CSMS$DISTRIBUTE END

December 2004 SMS Training Course 24

Simple Decomposition Example:
Dynamic Memory

• 2D dynamic memory array decomposed
in the first dimension

CSMS$DECLARE_DECOMP(my_dh, 1)

integer, parameter :: IM = 15
integer, parameter :: JM = 10

CSMS$DISTRIBUTE(my_dh, <IM>) BEGIN
real :: x(IM,JM)

CSMS$DISTRIBUTE END

CSMS$CREATE_DECOMP(my_dh, <IM>, <0>)

December 2004 SMS Training Course 25

Simple Decomposition Example:
Dynamic Memory

CSMS$DISTRIBUTE(my_dh, <IM>) BEGIN
C Rollout
c-SMS real :: x(IM,JM)

real x(local_start:local_end, JM)
CSMS$DISTRIBUTE END

CSMS$CREATE_DECOMP(my_dh, <IM>, <0>)
call SMS_DECOMP(…)

December 2004 SMS Training Course 26

Simple Decomposition Example
P2P1 P3

Local Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Serial Declaration: real x(15,10)

Parallel Declaration, P1: real x(1: 5,10)
Parallel Declaration, P2: real x(6:10,10)
Parallel Declaration, P3: real x(11:15,10)

December 2004 SMS Training Course 27

2-D Decomposition Example
• Two decomposed dimensions, 3D array

– 1st and 2nd dimensions of x1 are
decomposed using the 1st and 2nd

dimensions of my_dh

CSMS$DECLARE_DECOMP(my_dh, 2)
CSMS$DISTRIBUTE(my_dh, <IM>, <JM>) begin

real :: x1(IM,JM,KM)
CSMS$DISTRIBUTE end

C Rollout
real x1(start1:end1, start2:end2, KM))

PE Layout

dim2

dim1

dim3

Array dims

December 2004 SMS Training Course 28

Loop Transformation Directive

• CSMS$PARALLEL
– Tells SMS where/how loops need to be translated

into their parallel equivalents
– Defines a “parallel region”

• Provides default decomposition “context” for other
directives

– User specifies loop index variables to guide
translation

December 2004 SMS Training Course 29

Loop Transformation Directive

• CSMS$PARALLEL
– Syntax:
CSMS$PARALLEL(dh, <ddim1_loop_var,
CSMS$> ddim2_loop_var>) BEGIN

< CODE >
CSMSPARALLEL END

December 2004 SMS Training Course 30

Loop Transformation
C “dh” is a 1D decomposition
CSMS$PARALLEL(dh, <i>) BEGIN
...
 do i=1,15
...
CSMS$PARALLEL END

C conceptual rollout
C P1 -->
 do i=1,5

C P2 -->
 do i=6,10

C P3 -->
 do i=11,15

December 2004 SMS Training Course 31

Loop Transformation

C “dh” is a 1D decomposition
CSMS$PARALLEL(dh, <i>) BEGIN
...
 do i=14,15
...
CSMS$PARALLEL END

C conceptual rollout
C P1, P2 -->
 do NOTHING

C P3 -->
 do i=14,15

December 2004 SMS Training Course 32

Boundary Conditions
• CSMS$GLOBAL_INDEX

– Functionality
• Ensures that assignment statements execute only on

appropriate process(es)

– Syntax:
CSMS$GLOBAL_INDEX(ddim1, ddim2)

December 2004 SMS Training Course 33

Boundary Conditions
C Array x is decomposed
 real x(15)
CSMS$GLOBAL_INDEX(1) BEGIN
 x(8) = 0.0
CSMS$GLOBAL_INDEX END

C Conceptual rollout
C P1 -->
 do NOTHING
C P2 -->
 x(8) = 0.0
C P3 -->
 do NOTHING

6 7 8 9 10

P2
real x(6:10)

December 2004 SMS Training Course 34

Outline
• Overview
• Decompositions, array/loop transformations
• Resolving adjacent and global dependencies
• Partial parallelization
• Nesting
• I/O
• Building and running an SMS program
• Debugging support
• Performance optimization

December 2004 SMS Training Course 35

Adjacent Dependencies

x(i,j) = y(i,j) + y(i+1,j) + y(i-1,j) + y(i,j-1) + y(i,j+1)

“Stencil”: x(i,j) depends on:

y(i-1,j)

y(i,j)

y(i,j+1)

y(i+1,j)

y(i,j-1)

December 2004 SMS Training Course 36

Off-Process References Due To
Adjacent Dependencies

P2P1 P3
Communication

needed

Communication
needed

y(i,j) = x(i,j) + x(i+1,j) + x(i-1,j)
+ x(i,j+1) + x(i,j-1)

December 2004 SMS Training Course 37

Some Terminology

interior region data

lower
halo
region

upper
halo
region

halo region data

P2P1 P3

December 2004 SMS Training Course 38

Halo Region Update

Halo Thickness = 1

Not
Used

Not
Used

P2P1 P3

Global Index 4 5321 6 6 7 8 9 105 11 11 12 15141310

December 2004 SMS Training Course 39

Halo Update Directive

• CSMS$HALO_UPDATE
– Functionality

• HALO_UPDATE data with neighboring processes to
enable finite difference calculations

• Sends appropriate data to neighbors
• Stores received data in halo regions
• HALO_UPDATEs are aggregated together to reduce

latency: CSMS$HALO_UPDATE(x,y)
• Other optimizations discussed later

– Syntax:
CSMS$HALO_UPDATE(arr1, arr2, ...)

December 2004 SMS Training Course 40

1-D Halo Update Example
Halo Thickness 1

integer, parameter :: IM=15
integer, parameter :: JM=10

CSMS$DECLARE_DECOMP(my_dh, 1)
CSMS$DISTRIBUTE(my_dh, <IM>) BEGIN

real x(IM, JM)
CSMS$DISTRIBUTE END
CSMS$CREATE_DECOMP(my_dh, <IM>, <1>)
CSMS$HALO_UPDATE(x) ! does the communication
C Rollout

call SMS_HALO_UPDATE(x)
do j = 1, JM

do i = 1, IM
y(i,j) = x(i,j) + x(i+1,j) + x(i-1,j)

+ x(i,j+1) + x(i,j-1)

December 2004 SMS Training Course 41

Adjacent Dependencies

x(i,j) = y(i,j) + y(i+1,j) + y(i+2,j) + y(i,j+1) + y(i,j+2)
+ y(i-1,j) + y(i-2,j) + y(i,j-1) + y(i,j-2)
+ y(i+1,j+1) + y(i+1,j-1)
+ y(i-1,j+1) + y(i-1,j-1)

“Stencil”: x(i,j) depends on:

December 2004 SMS Training Course 42

Halo Region Update

Halo Thickness = 2

Not
Used

Not
Used

P2P1 P3

Global Index 4 5321 6 7 11 12 1514134 6 7 8 9 10 1095 11 12

December 2004 SMS Training Course 43

1-D Halo Update Example
Halo Thickness 2

integer, parameter :: IM=15
integer, parameter :: JM=10

CSMS$DECLARE_DECOMP(my_dh, 1)
CSMS$DISTRIBUTE(my_dh, <IM>) BEGIN

real x(IM, JM)
CSMS$DISTRIBUTE END
CSMS$CREATE_DECOMP(my_dh, <IM>, <2>)
CSMS$HALO_UPDATE(x)

do j = 1, JM
do i = 1, IM

y(i,j) = x(i,j) + x(i+1,j) + x(i-2,j)
+ x(i,j+1) + x(i,j-2)

December 2004 SMS Training Course 44

2D Halo Update

SMS Directive: CSMS$HALO_UPDATE

December 2004 SMS Training Course 45

2D Halo Update

SMS Directive: CSMS$HALO_UPDATE

December 2004 SMS Training Course 46

2D Halo Update

SMS Directive: CSMS$HALO_UPDATE

December 2004 SMS Training Course 47

2D Halo Update

SMS Directive: CSMS$HALO_UPDATE

December 2004 SMS Training Course 48

2-D Halo Update Example
Halo Thickness 2

integer, parameter :: IM=15
integer, parameter :: JM=10

CSMS$DECLARE_DECOMP(my_dh, 2)
CSMS$DISTRIBUTE(my_dh, <IM>, <JM>) BEGIN

real x(IM, JM)
CSMS$DISTRIBUTE END
CSMS$PARALLEL(my_dh, <IM>, <JM>) BEGIN
CSMS$CREATE_DECOMP(my_dh, <IM,JM>, <2,2>)
CSMS$HALO_UPDATE(x)

do j = 1, JM
do i = 1, IM

y(i,j) = x(i,j) + x(i+1,j) + x(i-2,j)
+ x(i,j+1) + x(i,j-2)

December 2004 SMS Training Course 49

Global Dependencies

• When you need a global maximum, minimum
or summation across all processes then use
the directive CSMS$REDUCE

December 2004 SMS Training Course 50

“Inexact” Summation

x

P1 P2 P3

1 3 4 52 6 8 9 107 11 13 14 1512

xsum xsum xsum

xsum

P1

P2

P3

CSMS$PARALLEL(my_dh, <i>) BEGIN
 xsum = 0.0
 do i=1,15
 xsum = xsum + x(i)
 enddo
CSMS$REDUCE(xsum, SUM)
CSMS$PARALLEL END

December 2004 SMS Training Course 51

Reduction Directives

• CSMS$REDUCE

– Functionality
• Determine MAX, MIN or SUM over all processes via

communication
• Reduction done "in place“
• Reductions are aggregated together to reduce latency

– General Syntax:
CSMS$REDUCE(non_decomposed_var1,non_decomposed_var2, OP)

– “OP” = “SUM”, “MAX”, or “MIN”

December 2004 SMS Training Course 52

Reductions (continued)

• Summation details
– Compute "local sum" on each process
– Sum "local sums" over processors to get final

result
– Results differ slightly for different numbers of

processes with floating-point data
• Floating-point addition is NOT associative

• Use BEGIN-END form of the CSMS$REDUCE
directive to get “bitwise-exact” results

December 2004 SMS Training Course 53

Bitwise-exact Summation
P1 P2 P3

1 3 4 52 6 8 9 107 11 13 14 1512
x

xsum

P1

P2

P3

xglobal

“gather”

11 151413126 7 9 101 3 4 52

CSMS$PARALLEL(my_dh, <i>) BEGIN
 xsum = 0.0
CSMS$REDUCE(xsum, SUM) BEGIN
 do i=1,15
 xsum = xsum + x(i)
 enddo
CSMS$REDUCE END
CSMS$PARALLEL END

December 2004 SMS Training Course 54

Bitwise-exact Summation
C Rollout
CSMS$PARALLEL(my_dh, <i>) BEGIN
 xsum = 0.0
CSMS$REDUCE(xsum, SUM) BEGIN
c-SMS do i=1,15
c-SMS xsum = xsum + x(i)
c-SMS enddo
 call SMS_GATHER(x,x_global)
 do I = 1, 15
 xsum = xsum + x_global(i)
 end do
 call SMS_BROADCAST(xsum)
CSMS$REDUCE END
CSMS$PARALLEL END

December 2004 SMS Training Course 55

Bitwise-exact Summation
• CSMS$REDUCE

– Functionality
• Use this form when debugging because you can check if

model solutions are bitwise exactly what you expect
• Addresses floating point addition round-off error
• Result is independent of number of processes
• Performance penalty
• Activated when environment variable SMS_BITWISE is

EXACT
• Otherwise, reverts to standard behavior

– Syntax for bitwise exact form:
CSMS$REDUCE(non_decomposed_var, SUM) BEGIN

CODE
CSMS$REDUCE END

December 2004 SMS Training Course 56

Outline
• Overview
• Decompositions, array/loop transformations
• Resolving adjacent and global dependencies
• Partial parallelization
• Nesting
• I/O
• Building and running an SMS program
• Debugging support
• Performance optimization

December 2004 SMS Training Course 57

Partial Parallelization:
SERIAL

CSMS$SERIAL BEGIN
SERIAL CODE...

CSMS$SERIAL END

“gather”

“scatter”

“broadcast”

December 2004 SMS Training Course 58

Partial Parallelization:
SERIAL

• CSMS$SERIAL
– Functionality

• Code between BEGIN and END executed on one
designated “root” process

• Useful when
– other SMS directives cannot easily be applied to a

piece of serial code and/or
– Efficient performance is not critical (i.e. during

initialization)

December 2004 SMS Training Course 59

Partial Parallelization:
SERIAL

• CSMS$SERIAL
– Syntax:
CSMS$SERIAL([communication specifications]) BEGIN
Serial Code

CSMS$SERIAL END

– Use “communication specifications” to improve
performance

• Discussed later…

December 2004 SMS Training Course 60

Partial Parallelization:
SERIAL

CSMS$DISTRIBUTE(my_dh, <IM>) BEGIN
 real x(IM)
 real y(IM)
CSMS$DISTRIBUTE END
 y = 2.0
CSMS$SERIAL BEGIN
 open(10, file=’f0’, form=’unformatted’)
 open(11, file=’f1’, form=’unformatted’)
 do ind = 4, 5
 read (10) x(ind)
 write(11) y(ind)
 end do
 close(10)
 close(11)
CSMS$SERIAL END

December 2004 SMS Training Course 61

Terminology Reminder

interior region data

lower
halo
region

upper
halo
region

halo region data

P2P1 P3

December 2004 SMS Training Course 62

Partial Parallelization:
TO_LOCAL(interior)

• In NFS and other models there are
subroutines which are:
– Hard to parallelize

• In NFS we want a 2-dimensional decomposition
• But this decomposition cannot be applied to collapsed

loops and arrays such as in CUPKUO

– Have no dependencies (“embarrassingly parallel”)

December 2004 SMS Training Course 63

Partial Parallelization:
TO_LOCAL(interior)

• In such cases, just the interior (no halo
points) of decomposed arrays can be passed
to these subroutines

• The correct process local array sizes must
also be passed

• CSMS$TO_LOCAL with the “interior” option
handles this case

December 2004 SMS Training Course 64

Partial Parallelization:
TO_LOCAL(interior)

 program to_local
 integer, parameter :: IM = 15
 integer, parameter :: JM = 10
 integer IMJM

 real x(IM,JM)

 IMJM = IM*JM
 call EMBARRASSINGLY_PARALLEL(X, IMJM)

 end

 subroutine EMBARRASSINGLY_PARALLEL(X, IMJM)
 integer IMJM
 real X(IMJM)
 do I = 1, IMJM
 X(I) = 0.0
 end do

December 2004 SMS Training Course 65

Partial Parallelization:
TO_LOCAL(interior)

 program to_local
 integer, parameter :: IM = 15
 integer, parameter :: JM = 10
 integer IMJM
CSMS$DECLARE_DECOMP(my_dh, 2)
CSMS$DISTRIBUTE(my_dh, <IM>, <JM>) BEGIN
 real x(IM,JM)
CSMS$DISTRIBUTE END
CSMS$TO_LOCAL(my_dh : <1,IM:interior>, <2,JM:interior>) BEGIN
 IMJM = IM*JM
 call EMBARRASSINGLY_PARALLEL(X, IMJM)
CSMS$TO_LOCAL END
 end

 subroutine EMBARRASSINGLY_PARALLEL(X, IMJM)
 integer IMJM
 real X(IMJM)
 do I = 1, IMJM
 X(I) = 0.0
 end do

December 2004 SMS Training Course 66

Partial Parallelization:
TO_LOCAL(interior)

Rollout

CSMS$TO_LOCAL(my_dh : <1,IM:interior>, <2,JM:interior>) BEGIN

 IMJM = DECOMP_DIM_1_LOCAL_SIZE * DECOMP_DIM_2_LOCAL_SIZE

 call EMBARRASSINGLY_PARALLEL(
 & X(DDIM1_INTERIOR_START:DDIM1_INTERIOR_END,
 & DDIM2_INTERIOR_START:DDIM2_INTERIOR_END), IMJM)

CSMS$TO_LOCAL END

 end

December 2004 SMS Training Course 67

Outline
• Overview
• Decompositions, array/loop transformations
• Resolving adjacent and global dependencies
• Partial parallelization
• Nesting
• I/O
• Building and running an SMS program
• Debugging support
• Performance optimization

December 2004 SMS Training Course 68

Nesting Overview

• SMS handles nested models for fixed nest locations
(no moving nests currently)

• Nesting is supported in both directions (parent to
child and child to parent) for multiple nests

• It is assumed that nested grid interpolation is linear,
i.e. child grid points are computed by a linear
combination of parent grid points

• The serial code must implement these linear
combinations in a particular way shown a bit later

December 2004 SMS Training Course 69

Nesting Interpolation Example
FINE_COORDS(2,4)=W1*COARSE_COORDS(3,4) + W2*COARSE_COORDS(4,4) +

W3*COARSE_COORDS(3,5) + W4*COARSE_COORDS(4,5)

MAX_STENCIL_POINTS=4
NUM_FINE_POINTS=48

j

i

coarse_coords(:,1,ifp)=(/3,4/)
coarse_coords(:,2,ifp)=(/4,4/)
corase_coords(:,3,ifp)=(/3,5/)
coarse_coords(:,4,ifp)=(/4,5/)

COARSE_NEST

FINE_NEST

coarse_weights(:, ifp)=(/W1,W2,W3,W4/)

fine_coords(:,ifp)=(/2,4/)

December 2004 SMS Training Course 70

Nesting Serial Code - Setup
 coarse_weights = 0.0

 ifp = 0
 do j=1,jm_fine
 do i=1,im_fine
 ifp = ifp + 1
 fine_coords(1,ifp) = i
 fine_coords(2,ifp) = j

 C Set up coarse points needed for interpolation...
 coarse_coords(1,1,ifp) = ioffset + ((i-1)/3)
 coarse_coords(2,1,ifp) = joffset + ((j-1)/3)
 .
 .
 C Compute weights...
 if ((mod(i,3).eq.1).and.(mod(j,3).eq.1)) then
 coarse_weights(1,ifp) = 0.67
 endif

 if ((mod(i,3).eq.2).and.(mod(j,3).eq.1)) then
 .
 .

 end do
 end do

 num_fine_points = ifp

December 2004 SMS Training Course 71

Nesting Serial Code - Interpolate

 do k = 1, km
 do ifp=1,num_fine_points
 nest_fine(fine_coords(1,ifp),fine_coords(2,ifp),k)= 0.0

 do icp=1,max_coarse_points ! 4 for bi-linear interpolation

 if (coarse_weights(icp,ifp).ne.0.0) then
 nest_fine(fine_coords(1,ifp),fine_coords(2,ifp),k)=
 & nest_fine(fine_coords(1,ifp),fine_coords(2,ifp),k)+
 & (coarse_weights(icp,ifp) *
 & nest_coarse(coarse_coords(1,icp,ifp),
 & coarse_coords(2,icp,ifp),k))
 endif
 end do
 end do
 end do

December 2004 SMS Training Course 72

Nesting Directives

• CSMS$DECLARE_DECOMP(grid_dh(3),2)

– Specify 3 nests for the decomposition
– This is a 2-dimensional decomposition
as we have seen before

• CSMS$CREATE_DECOMP(grid_dh(1),<im1,jm1>, <1,1>)
• CSMS$CREATE_DECOMP(grid_dh(2),<im2,jm2>, <1,1>)
• CSMS$CREATE_DECOMP(grid_dh(3),<im3,jm3>, <1,1>)

– Create the decompositions with the
appropriate nest sizes

December 2004 SMS Training Course 73

Nesting Directives

• CSMS$SET_NEST_LEVELS(2,3)

– In models such as NFS, a single
subroutine handles nesting
interpolation between any pair of
nests

– SMS provides a means for directives
to refer to parameterized (instead of
absolute) nest levels

– This example says that the
parameterized nest levels are 2 and 3

December 2004 SMS Training Course 74

Nesting Directives

CSMS$DISTRIBUTE(grid_dh($1), <im_coarse>, <jm_coarse>) begin

real x_coarse(im_coarse,jm_coarse)

– In this example, x_coarse is distributed
based on the decomposition for the 1st of the
parameterized nest levels (nest level 2)

CSMS$DISTRIBUTE(grid_dh($2), <im_fine>, <jm_fine>) begin

real x_fine(im_fine,jm_fine)

– x_fine is distributed based on the
decomposition for the 2nd of the
parameterized nest levels (nest level 3)

December 2004 SMS Training Course 75

Nesting Directives

CSMS$PARALLEL(grid_dh($2), <i>, <j>) begin

do j = 1, jm_fine
do i = 1, im_fine

– The loops here are translated based
on the 2nd of the parameterized nest
levels (nest level 3)

December 2004 SMS Training Course 76

Nesting Directives
csms$set_transfer_interpolation(grid_dh($1), grid_dh($2), 2,
csms$> num_fine_points, fine_coords, max_coarse_points,
csms$> coarse_coords, coarse_weights, INTERP)

• This directive stores away inside SMS the indices,
weights and communication patterns needed to
interpolate nest grid points

• grid_dh($1) and grid_dh($2) are the (parameterized)
decompositions

• The number “2” indicates that this is a 2-dimensional
interpolation (although it can be executed
symmetrically over multiple levels as is shown in the
user’s guide)

• num_fine_points are the total number of fine points
that have to be computed

December 2004 SMS Training Course 77

Nesting Directives
csms$set_transfer_interpolation(grid_dh($1), grid_dh($2), 2,
csms$> num_fine_points, fine_coords, max_coarse_points,
csms$> coarse_coords, coarse_weights, INTERP)

• max_coarse_points (4 in our example) is the number
of coarse points used to compute each fine point

• fine_coords is the array of coordinates of fine grid
points that are to be computed

• coarse_coords is the array of coordinates of the
coarse grid used to compute the fine points

• coarse_weights are the weights used in the linear
combination

• INTERP is an SMS handle that will be referenced by
the actual TRANSFER directive (see below)

December 2004 SMS Training Course 78

Nesting Directives
CSMS$TRANSFER(<t_coarse, t_fine : INTERP >
CSMS$> <q_coarse,q_fine: INTERP>) BEGIN

c-SMS Serial Interpolation code here
call sms_transfer_interpolate(t_coarse, …)

CSMS$TRANSFER END

• PPP replaces the serial interpolation code
with SMS library calls that interpolate
nest_coarse to nest_fine using the stored
away interpolation scheme

December 2004 SMS Training Course 79

Using SMS
• Overview
• Decompositions, array/loop transformations
• Resolving adjacent and global dependencies
• Partial parallelization
• Nesting
• I/O
• Building and running an SMS program
• Debugging support
• Performance optimization

December 2004 SMS Training Course 80

SMS Unformatted I/O

• No directives required except :
– Non-FORTRAN I/O such as DMS, use CSMS$SERIAL

December 2004 SMS Training Course 81

SMS Formatted I/O

• Handled automatically except:
– Special “print” behaviors (handle with
CSMS$PRINT_MODE)

December 2004 SMS Training Course 82

Printing

• What does parallel print mean?
print *,'hello'
>> hello
>> hellohellohello
>> hhelheellollloo
>> hello

hello
hello

December 2004 SMS Training Course 83

Printing

• SMS supports several print behaviors (print
modes)

• Default print mode (“ROOT”) mimics serial
code
– One printed message per print statement

• Use CSMS$PRINT_MODE to select other print
modes
– “ASYNC”

• Data-dependent prints

December 2004 SMS Training Course 84

Data-Dependent Printing
(Asynchronous Print Mode)

• “ASYNC” print mode
– Every process prints
– No ordering or synchronization

• Print order may vary from one run to the next
– Use for prints that depend on decomposed data
CSMS$PARALLEL(dh, <i>) BEGIN

do i = 1, IM
if (x(i) .eq. 0.0) then

CSMS$PRINT_MODE(async) BEGIN
print *, 'ERROR: x(i) is 0!'

CSMS$PRINT_MODE END

– With default print mode, error messages from
processes other than the “ROOT” process will
not be printed

December 2004 SMS Training Course 85

Using SMS
• Overview
• Decompositions, array/loop transformations
• Resolving adjacent and global dependencies
• Partial parallelization
• Nesting
• I/O
• Building and running an SMS program
• Debugging support
• Performance optimization

December 2004 SMS Training Course 86

Using PPP

• ppp (Command-line options) file
– Source file

ppp source_file.f
generates
source_file_sms.f

December 2004 SMS Training Course 87

PPP options

– --includepath=path
• Tell PPP where to look for include files
• Analogous to Fortran -I option
• Required: --includepath=$SMS/include

– $SMS is an environment variable that refers
to the directory containing the SMS library
you are using

December 2004 SMS Training Course 88

PPP options

• Suppose you put your DECLARE_DECOMP directive
into module “my_module” and want it to be
visible to all files that are run through PPP.
The option –Fmodule=my_module will cause PPP to
add “use my_module” to any subroutine processed
by the PPP command

December 2004 SMS Training Course 89

PPP options

[decomp.f]
module decomp_module

CSMS$DECLARE_DECOMP(my_dh, 1)
end module decomp_module

[sub.f]
subroutine sub
use my_module

CSMS$DISTRIBUTE(my_dh, <IM>) begin
real x(IM)

CSMS$DISTRIBUTE end
return
end

ppp decomp_module.f --> decomp_module_sms.f

ppp --Fmodule=decomp_module sub.f --> sub_sms.f

December 2004 SMS Training Course 90

PPP options

– --r8
• Tell PPP to assume all variables of type real are 8 bytes

• Variables declared with an explicit kind (i.e. real(kind=4)
or real*4) will be left as is.

December 2004 SMS Training Course 91

PPP options
--comment

• Lines of code that PPP would delete are, instead, left in
as comments

csms$parallel(my_dh, <i>) begin
c-SMS do i = 1,IM

do i = start1,end1
u(i) = 0.0

end do
csms$parallel end

--CompareOnly
• Tells PPP to only translate COMPARE_VAR directives

(discussed later)

December 2004 SMS Training Course 92

Compiling, Linking

• Compiling
pgf90 –c –I $SMS/include sub1_sms.f
pgf90 –c –I $SMS/include sub2_sms.f

• Linking
mpif90 –o par_code sub1_sms.o
sub2_sms.o –L $SMS/lib -lsms

December 2004 SMS Training Course 93

Running

• Running
smsRun -np 2 par_code

• par_code can be
– An SMS binary executable

– A shell script that sets some environment
variables and then executes an SMS binary
executable. For example:

[par_code]
setenv CWBNFSL N04011212serial
sms_binary_nfs.exe

December 2004 SMS Training Course 94

Using SMS
• Overview
• Decompositions, array/loop transformations
• Resolving adjacent and global dependencies
• Partial parallelization
• Nesting
• I/O
• Building and running an SMS program
• Debugging support
• Performance optimization

December 2004 SMS Training Course 95

Debugging Procedure

• Establish serial baselines
• Verify parallel reproducibility

– One process
– Multiple processes

• Use “bitwise-exact" comparison
– Round-off error can mask bugs

December 2004 SMS Training Course 96

SMS Debugging Directives
Insert directives any place in the code to

ensure array values are correct

Interior Region

Halo Region

compare_var

check_halo

Local Data Array

December 2004 SMS Training Course 97

CSMS$COMPARE_VAR
SMS Runtime Environment

Compare C

Compare A,B

Four Process Exec

executable
code

executable
code

csms$compare_var(A,B)

csms$compare_var(C)

program main

end program

One Process Exec

executable
code

executable
code

csms$compare_var(A,B)

csms$compare_var(C)

program main

end program

December 2004 SMS Training Course 98

Debugging Directives

• CSMS$COMPARE_VAR
– Functionality

• Verifies that variable has same values for 2
separate runs

• Checks interior (not halo) of variable
• variables can only be a simple type (real,
integer, etc.)

– Syntax:
CSMS$COMPARE_VAR(y, 'At Here')

• If variable does not have same values; error
msg and termination:
compare_var failed : y At Here
Values for first, second run : 38.0 17.0
Incorrect at indices 10 13 2

December 2004 SMS Training Course 99

Debugging Directives

– Two execution modes
• One program

– smsRun –np 1 par_code –np 4 par_code –cv
– “-cv” says execute the COMPARE_VAR directives

• Two programs (i.e. serial and SMS parallel
codes)
– SMS parallel code translated and compiled
normally

– Serial code translated as follows:
ppp --CompareOnly my_prog.f

(This only translates COMPARE_VAR directives)

– smsRun –np 1 serial_code –np 1 par_code –cv

December 2004 SMS Training Course 100

Debugging Directives

– CSMS$COMPARE_VAR example
 subroutine s1(x,y)
 integer, parameter :: im=10
csms$distribute(my_dh, 1) begin
 real x(im)
 real y(im)
csms$distribute end

csms$parallel(my_dh, <i>) begin
 do i = 2, im – 1
 y(i) = x(i-1) + x(i)
 end do
csms$compare_var(y(2:im-1), 'After I loop')

December 2004 SMS Training Course 101

Debugging Directives
• CSMS$CHECK_HALO

– Functionality
• Verifies that variable halo region is up-to-
date

• If halo not up-to-date; error msg and
termination:
Halo check failed for var: x Here

• Degrades performance
• Enabled when SMS_CHECK_HALO is ON

– Syntax:
CSMS$CHECK_HALO(x, 'Here')

• Syntax similar to HALO_UPDATE
• User also specifies string that indicates where
check being made

December 2004 SMS Training Course 102

interior region data

CSMS$CHECK_HALO

halo region data

P3P1 P2

compare

December 2004 SMS Training Course 103

Debugging Directives

• CSMS$CHECK_HALO example
 subroutine s1(x,y)
 integer, parameter :: im=10
csms$distribute(my_dh, 1) begin
 real x(im)
 real y(im)
csms$distribute end

csms$parallel(my_dh, <i>) begin

csms$check_halo(x, 'Before i loop')
 do i = 2, im – 1
 y(i) = x(i-1) + x(i)
 end do

December 2004 SMS Training Course 104

Using SMS
• Overview
• Decompositions, array/loop transformations
• Resolving adjacent and global dependencies
• Partial parallelization
• Nesting
• I/O
• Building and running an SMS program
• Debugging support
• Performance optimization

December 2004 SMS Training Course 105

Performance Optimization

• Combine communications (aggregation)
• Optimize halo updates
• Trade communication for redundant

computation
CSMS$HALO_COMP

• Optimize CSMS$SERIAL

December 2004 SMS Training Course 106

Communication Aggregation

• Combine communication operations
– Reduces number of messages

• Fewer messages = less message start-up time (latency)

• Big speed-up on high-latency machines

• Works with CSMS$HALO_UPDATE,
CSMS$TRANSFER, and CSMS$REDUCE

December 2004 SMS Training Course 107

Communication Aggregation: Before

CSMS$HALO_UPDATE(z)
 do 100 i=3,13
 y(i) = z(i) - z(i-1) - z(i+1) - z(i-2) - z(i+2)
 100 continue
CSMS$HALO_UPDATE(a)
 do 200 i=3,13
 x(i) = a(i) + a(i-1) + a(i+1) + a(i-2) + a(i+2)
 200 continue

December 2004 SMS Training Course 108

Communication Aggregation: After

CSMS$HALO_UPDATE(a, z)
 do 100 i=3,13
 y(i) = z(i) - z(i-1) - z(i+1) - z(i-2) - z(i+2)
 100 continue
 do 200 i=3,13
 x(i) = a(i) + a(i-1) + a(i+1) + a(i-2) + a(i+2)
 200 continue

December 2004 SMS Training Course 109

Halo Update Optimizations

• Partial halo updates
– Update inner layers of halo only

• Array section halo updates
– Limit HALO_UPDATE to selected region in non-

decomposed dimensions
• Both reduce amount of data sent

December 2004 SMS Training Course 110

Partial HALO_UPDATE
(Limited Halo Thickness)

Global Index

P1

4 5321 6 7

P3

11 12 151413109

P2

6 7 8 9 105 114 12

CSMS$CREATE_DECOMP(dh, <IM>, <2>)
real u(IM,JM) ! Only i dim is

decomposed
CSMS$HALO_UPDATE(u<1,1>)
CSMS$CHECK_HALO(u<1,1>)

y

x

December 2004 SMS Training Course 111

Partial HALO_UPDATE
(Array Section and Limited Halo)

y

x

CSMS$CREATE_DECOMP(dh, <IM>, <2>)

CSMS$HALO_UPDATE(u(:,2:5)<1,0>)

CSMS$CHECK_HALO (u(:,2:5)<1,0>)

do j = 2,5

do i = 1,IM

v(i,j) = u(i-1,j) + u(i,j)

Global Index

P1

4 5321 6 7

P3

11 12 151413109

P2

6 7 8 9 105 114 12

December 2004 SMS Training Course 112

Trade Communication For
Redundant Computation

• CSMS$HALO_COMP
– Functionality

• Computation in the “halo” regions
• Reduces the number of HALO_UPDATEs

– Can reduce latency and amount of data
communicated

• Halo computation is “redundant”
– Identical computation is done in the "interior" of a

neighboring process
• Performance tradeoff

– Measure performance to evaluate tradeoff

December 2004 SMS Training Course 113

Trade Communication For
Redundant Computation

• CSMS$HALO_COMP
– Syntax:
CSMS$HALO_COMP(<ddim1_lower, ddim1_upper>,
CSMS$> <ddim2_lower, ddim2_upper>) BEGIN

Serial Loops
CSMS$HALO_COMP END

ddim1_lower is the number of halo points in the
lower halo region for which computations should be
executed for the first decomposed dimension

Analogously for ddim1_upper, ddim2_lower,
ddim2_upper

December 2004 SMS Training Course 114

Example Without CSMS$HALO_COMP

CSMS$PARALLEL(my_dh,<i>) BEGIN

CSMS$HALO_UPDATE(a<1,1>)
 do 150 i=3,8
 y(i) = a(i) - a(i+1) - a(i-1)
 z(i) = a(i) + a(i+1) - a(i-1)
 150 continue

CSMS$HALO_UPDATE(y<1,1>, z<1,1>)
 do 250 i=3,8
 x(i) = y(i)*z(i) + y(i+1)*z(i-1) + y(i-1)*z(i+1)
 250 continue
CSMS$PARALLEL END

December 2004 SMS Training Course 115

Example Without CSMS$HALO_COMP

• Iterations for loops 150 and 250 are the same:

P2
6 7 8 9 1054Global Index

P1
4 5321 6 7

Each stencil
centered at i

December 2004 SMS Training Course 116

Example With CSMS$HALO_COMP

CSMS$PARALLEL(my_dh,<i>) BEGIN

CSMS$HALO_UPDATE(a<2,2>)
CSMS$HALO_COMP(<1,1>) BEGIN
 do 150 i=3,8
 y(i) = a(i) - a(i+1) - a(i-1)
 z(i) = a(i) + a(i+1) - a(i-1)
 150 continue
CSMS$HALO_COMP END

C Do not need CSMS$HALO_UPDATE(y<1,1>, z<1,1>)
 do 250 i=3,8
 x(i) = y(i)*z(i) + y(i+1)*z(i-1) + y(i-1)*z(i+1)
 250 continue
CSMS$PARALLEL END

December 2004 SMS Training Course 117

Example With CSMS$HALO_COMP

• Iterations for loop 250 remain the same
• Iterations for loop 150 change as follows:

Redundant
computation

P2
6 7 8 9 1054Global Index

P1
4 5321 6 7

December 2004 SMS Training Course 118

More Efficient Version of
CSMS$SERIAL

C Assume X and Y are decomposed

CSMS$SERIAL(<x, in>, <y, out> : default=ignore) BEGIN
 do i = 1, IM
 y(i) = x(i)
 end do

CSMS$SERIAL END

In this efficient version, x is gathered,
y is scattered but there is no other
communication

With normal SERIAL, additionally “y”
would be gathered, “x” would be scattered
and “i” would be broadcast

December 2004 SMS Training Course 119

Questions?

	SMS Training Course
	Outline
	Overview
	Overview
	SMS Serial Code
	Typical FDA Decompositions
	Overview
	Overview
	Overview
	Overview
	Overview
	Overview
	Overview
	Overview
	Outline
	Decomposition Directives
	Decomposition Directives
	Decomposition Directives
	Decomposition Directives
	Decomposition Directives
	Decomposition Directives
	Decomposition Directives
	Simple Decomposition Example: Dynamic Memory
	Simple Decomposition Example: Dynamic Memory
	Simple Decomposition Example
	2-D Decomposition Example
	Loop Transformation Directive
	Loop Transformation Directive
	Loop Transformation
	Loop Transformation
	Boundary Conditions
	Boundary Conditions
	Outline
	Adjacent Dependencies
	Off-Process References Due To Adjacent Dependencies
	Halo Region Update
	Halo Update Directive
	1-D Halo Update ExampleHalo Thickness 1
	Adjacent Dependencies
	Halo Region Update
	1-D Halo Update ExampleHalo Thickness 2
	2-D Halo Update ExampleHalo Thickness 2
	Global Dependencies
	“Inexact” Summation
	Reduction Directives
	Reductions (continued)
	Bitwise-exact Summation
	Bitwise-exact Summation
	Bitwise-exact Summation
	Outline
	Partial Parallelization:SERIAL
	Partial Parallelization:SERIAL
	Partial Parallelization:SERIAL
	Partial Parallelization:SERIAL
	Partial Parallelization:TO_LOCAL(interior)
	Partial Parallelization:TO_LOCAL(interior)
	Partial Parallelization:TO_LOCAL(interior)
	Partial Parallelization:TO_LOCAL(interior)
	Partial Parallelization:TO_LOCAL(interior)
	Outline
	Nesting Overview
	Nesting Interpolation Example
	Nesting Serial Code - Setup
	Nesting Serial Code - Interpolate
	Nesting Directives
	Nesting Directives
	Nesting Directives
	Nesting Directives
	Nesting Directives
	Nesting Directives
	Nesting Directives
	Using SMS
	SMS Unformatted I/O
	SMS Formatted I/O
	Printing
	Printing
	Data-Dependent Printing(Asynchronous Print Mode)
	Using SMS
	Using PPP
	PPP options
	PPP options
	PPP options
	PPP options
	PPP options
	Compiling, Linking
	Running
	Using SMS
	Debugging Procedure
	SMS Debugging Directives
	CSMS$COMPARE_VAR
	Debugging Directives
	Debugging Directives
	Debugging Directives
	Debugging Directives
	Debugging Directives
	Using SMS
	Performance Optimization
	Communication Aggregation
	Communication Aggregation: Before
	Communication Aggregation: After
	Halo Update Optimizations
	Partial HALO_UPDATE(Limited Halo Thickness)
	Partial HALO_UPDATE(Array Section and Limited Halo)
	Trade Communication For Redundant Computation
	Trade Communication For Redundant Computation
	Example Without CSMS$HALO_COMP
	Example Without CSMS$HALO_COMP
	Example With CSMS$HALO_COMP
	Example With CSMS$HALO_COMP
	More Efficient Version of CSMS$SERIAL
	Questions?

